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Abstract: Ultrafast laser systems, such as optical parametric chirped pulse amplifiers (OPCPA),
are complex tools. Optimizing laser performance for a given application is often plagued by
intricate couplings between different output parameters, making simultaneous control of multiple
pulse properties difficult. Here, we experimentally demonstrate an autonomous tuning procedure
of a white-light seeded two-stage OPCPA using an evolutionary strategy to reliably reach an
optimized working point. We use the data collected during the tuning procedure to calibrate a
performance model of the laser system, which we then apply to stabilize the intricately coupled
laser output energy and spectrum simultaneously. Our approach ensures reliable day-to-day
operation at optimized working points without manual tuning. We demonstrate shot-to-shot
energy stability of <0.18 % rms, in combination with <25 pm rms wavelength stability and
<0.2 % rms bandwidth stability during multi-day operation.
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1. Introduction

Operating a laser system at an optimal working point and ensuring the reproducibility of that
working point is crucial for arguably any laser application. However, in real-world operation,
perfect day-to-day reproducibility is difficult to achieve: a changing laboratory environment may
have subtle influences on the laser and change its operation conditions. Manually recovering the
system performance is often highly dependent on the experience and skill of the lasers operator.

This is especially true for complex ultrafast laser systems. A prime example are optical
parametric chirped pulse amplifiers (OPCPA) [1,2]. The flexibility in laser pulse properties
makes them an excellent source for a wide range of applications. However, the properties of the
amplified pulses are typically coupled and adjusting only one input parameter, e.g., the energy of a
pump pulse, can simultaneously affect many parameters, e.g., the energy, bandwidth, and spectral
shape of the amplified pulse. This complexity is caused by an intricate and often non-intuitive
interplay of different nonlinear and dispersive effects. The complexity quickly increases when
extending the system, e.g., by combining multiple amplification stages to achieve higher overall
gain. While this interplay provides a large number of tunable parameters that enable flexibility of
the output parameters, it also makes it difficult to ensure an optimally tuned laser. Environmental
influences, such as a warm-up of the laser hardware, can further reduce the reproducibility of
performance. The success of manual tuning to recover the performance often highly depends on
the operator’s experience and knowledge of the specific details of the laser system.

To be independent from such factors, an automated tuning and control procedure is desirable.
In the past, machine learning techniques have been used in several areas of photonics [3]. In
particular, the application to the self-tuning, optimization and mode-locking of ultrafast fiber lasers
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[4,5] and the application of deep reinforcement learning to optimize nonlinear processes such
as white light generation [6] demonstrate the potential benefits of machine learning techniques
in the generation and amplification of ultrafast laser pulses. However, to our knowledge, such
methods have not been applied to more complex multi-stage laser systems.

Here, we apply an evolutionary strategy to optimize the operating point of a two-stage ultrafast
OPCPA system that has been designed to seed a Ti:sapphire-based high-intensity laser system.
We demonstrate automated optimization of the laser for a variety of performance goals. Our
approach can be used to both (i) find a working point for a specific application and to (ii) improve
the day-to-day reproducibility of the laser performance. We use the data collected during the
optimization process to calibrate a linear performance model of the laser system, which we then
use to stabilise the system using full-state feedback control. While relatively simple, our approach
allows for precise long-term control of the laser performance and is transferable to other laser
technologies.

2. Experimental setup

Our experiments use a two-stage white-light seeded OPCPA system — named MaLcoLM — that
has previously been described in [7]. It delivers up to 50 uJ pulses with a spectrum centered at
around 800 nm, and at a repetition rate of 1 kHz. The spectrum of the amplified pulses supports a
minimum pulse duration of 25 fs. The pulses are amplified in lithium triborate (LBO) crystals,
that are colinearly phase-matched to ensure a high spatio-temporal beam quality.

As illustrated in Fig. 1, the OPCPA is driven by a commercial Yb-laser (Pharos, LightConver-
sion), that delivers 1 mJ pulses at a center wavelength of 1030 nm. The pulses are compressible
to approximately 170 fs, but we drive the parametric amplifier with a stretched output of 500 fs
pulse duration. These pulses are frequency doubled in a 1 mm long barium borate (BBO) crystal
to provide a 515 nm pump beam for the OPCPA stages. A few-uJ fraction of the fundamental
pulses are split off before the second harmonic generation (SHG), recompressed to the 170 fs
Fourier-limit in a transmission grating compressor, and used to drive the white light generation
(WLG) in YAG to provide the broadband seed that is amplified in the OPCPA stages. The beam
coming from the Pharos laser system is actively stabilised into the OPCPA setup by a piezo-based
beam stabilisation system.
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Fig. 1. Layout of the optical and diagnostic setup of the OPCPA system. SHG: Second
harmonic generation, WLG: White light generation, OPA: Optical parametric amplification
stage, DL: Delay line, SPLIT: Variable beam splitter, ATT: Variable attenuator, PM: Phase
matching angle, DIAG: Diagnostic setup
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The phase matching angles of the SHG and the two OPCPA stages can be adjusted using
motorized rotation stages. In addition, the relative delay between the pump and seed pulses in
both OPCPA stages can be adjusted with motorized delay lines in the respective pump arms, and
the pump energy of each OPCPA stage can be adjusted with a variable beam splitting unit and an
attenuator consisting of a motorized half-wave plate and a thin-film polarizer (TFP). All of these
actuators are piezo-crawler stages. In total, the laser system thus has 7 degrees of freedom that
can be used for optimization.

Software limits for each stage ensure safe operation of the laser. These limits are chosen to
correspond to mechanical constraints in the case of phase matching angles and delay lines, and
for the pump attenuators to keep the pump intensity below 60 GW/cm? to prevent laser-induced
damage of optics and ensure long-term reliable operation.

The spectrum and energy of the signal pulses are monitored by online diagnostics that use the
spectrally flat 2 % leakage of dedicated beam samplers after each OPCPA stage.

All diagnostics and stages are implemented in the DOOCS accelerator control system available
at DESY [8] and can be controlled using Python. All diagnostics operate at a repetition rate of
10 Hz.

3. Self-optimization

A number of numerical methods have been successfully used in the past to optimize the
performance of fiber lasers where the beam propagates in a well-controlled environment shielded
from outside influences. For laser systems such as optical parametric chirped pulse amplifiers
with substantial free-space propagation, the laser is more susceptible to changes in ambient
conditions, leading to increased noise and potential inaccuracies in the measurement of the laser
properties. In addition, small daily changes in the environmental conditions result in the inability
to create a sufficiently accurate and complete numerical model of the laser system that could be
used for numerical optimization of laser performance.

3.1.  Overview of suitable optimisation strategies

Many black-box optimization algorithms, that do not rely on any knowledge about the system,
have been developed and are well suited for optimization tasks with changing or unknown
parameters of the system. For example, Bayesian optimization has been successfully applied
to laser wakefield acceleration [9,10], which poses a similar optimization problem to that of
multi-stage laser systems. However, such surrogate-based methods have the disadvantage of
limited scalability to high-dimensional problems — i.e., problems with a large number of input
variables. In addition, fitting the surrogate model to the gathered data is computationally
expensive, making Bayesian optimization more appropriate for applications where the time
between sampling is long.

Evolutionary methods, such as genetic algorithms or evolutionary strategies, do not rely on a
surrogate model and can therefore outperform surrogate-based methods in applications where
sampling is fast [11] — such as high repetition rate laser systems. These methods optimize a
function mimicking biological evolution by comparing the performance of individuals (inputs to
the function) within a population, and continuously adjusting the population according to a set of
rules so that the overall performance of the population moves toward an optimum of the function.
Many such algorithms scale well to large numbers of input variables [11]. Within evolutionary
algorithms, evolutionary strategies are particularly well suited for optimization in continuous
parameter spaces [12], such as the positions of motorized stages.

A versatile and commonly used evolutionary strategy is the Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES) [13], in which the population consists of a distribution of
randomly sampled points. The mean and covariance matrix of this distribution are continuously
adapted, such that the distribution moves towards an optimum — similar to gradient descent
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methods — with the spread of the distribution continuously decreasing. CMA-ES works particularly
well with relatively few sampled points, ill-conditioned problems, and non-separable problems
[14], meaning that the input variables are strongly interdependent, as is the case in OPCPA
systems. While there are optimization methods with similar characteristics and possibly even
better performance in certain aspects, CMA-ES also has a small number of hyperparameters, i.e.,
parameters that control the algorithm itself, that may need to be tuned to make it optimise it for a
specific application. The resulting lack of need for extensive parameter tuning of the algorithm
makes the implementation of the algorithm relatively easy. For our application, we therefore
used a Python-based open source CMA-ES implementation [15].

The optimization process in CMA-ES starts from a point Xy within the search space, that
can either be randomly chosen or user-defined. A normally distributed population of N points —
called x; — with a standard deviation of oq around the mean X)) is then sampled to determine the
local variation of the fitness f(x;) of the function to be optimized. In the case of a laser system,
the fitness can be determined by some performance characteristic, such as, e.g., the output energy,
and the sampled point x; can be a set of input parameters. In simple implementations, the sampled
points are then ranked according to their respective fitness values and the covariance matrix of
the u best points is used to determine the mean X; and the width o of the distribution of points
of the next iteration. Newly sampled points within this updated distribution are then added to the
population to form the next generation of the evolutionary process. Over several such iterations,
the mean of the population converges to a global optimum, with the width of the distribution
decreasing once the optimum lies within the sampled distribution [14].

Due to the inherently statistical treatment of sampled points, CMA-ES tends to perform better
than many other evolutionary methods in the optimization of noisy functions [16]. However,
there is a trade-off between speed and noise robustness, as an increased robustness is achieved by
a larger number of sampled points per generation.

In our specific case we used the previously mentioned 7 actuators of our OPCPA system — the
phase matching angles of the SHG and both OPA stages, as well as the pump energy and pump
delay of both OPA stages — as input variables to the optimization algorithm and used a population
size of 9. Due to speed limitations of the actuators, the stage positions could only be updated at a
rate of 1 Hz. In this configuration, the potential speed of the evolutionary strategies algorithm
could therefore not be fully exploited, but we still used this approach to ensure scalability in
future systems with upgraded hardware.

3.2.  Self-tuning from a random initial state

A useful and desirable goal when seeding a Ti:Sapphire laser system is to maximize the bandwidth
and energy of the seed laser, while centering the spectrum at a wavelength that pre-compensates
the red-shift in the subsequent Ti:Sapphire amplifiers. We can use these desired parameters to
define a fitness function, describing laser output in a single value. For this particular objective
we chose

f=484-E~CAcos = ), M

where AA is the FWHM bandwidth of the output spectrum, E is the output energy, Acog is the
center of gravity wavelength of the output spectrum and Ay is the desired center wavelength. C is
an experimentally determined weighting constant. The product of the spectral bandwidth and the
output energy is roughly proportional to the peak power of the fully compressed pulses of the
OPCPA, which we want to maximize.

Figure 2 shows the evolution of the fitness function, the pulse energy, the bandwidth and the
central wavelength over the duration of an optimization run, starting from a random configuration
within the safety limits of the motorised stages. Initially, there is no amplification in the OPA
stages, and only after around 40 generations of randomly sampling the parameter space, a
configuration with a low output energy (within the dynamic range of the diagnostics) is found
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(compare also Fig. 3). The optimizer then starts to iteratively improve on this configuration and to
move the laser towards a state with high output energy. After around 200 iterations, the optimizer
converges to an optimal value, with further search leading to only very minor improvements The
evolution of the spectrum is also visible in Fig. 3.
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Fig. 2. Evolution of pulse properties during optimization from a random initial point. The
top panel shows the fitness function calculated using Eq. (1). Below are the normalized
output energy, the FWHM bandwidth AA and the center of mass wavelength of the output
spectrum. The target wavelength of 792 nm is indicated by the dashed line. The orange lines
show the respective values best configuration that has been found so far.

1.0 A — Generation 371
—-= Generation 111

e 0.8 Generation 78
§ 06 Generation 67
> Generation 55
i)
@ 0.4
IS

0.2 4

0.0

T T T T I I
750 775 800 825 850 875
Wavelength [nm]

Fig. 3. Snapshots of the output spectrum at different stages during optimization. The arrow
indicates the direction of evolution of the spectrum.

This is not only significantly faster than manual tuning, but also typically results in a 5-10%
increase in output energy and bandwidth compared to manual tuning. While the comparison is
somewhat subjective, it underscores the potential of automated tuning procedures.

The optimizer not only adjusts the parameters of the final OPCPA stage, whose output is
considered in the fitness function, but also actively adjusts the properties of the seed and pump
pulses, e.g. through slight adjustments of the phase matching angle of the SHG that generates
the pump pulse. Due to its narrow phase matching bandwidth, this adjustment has a significant
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influence on the spectral and temporal shape of the pump pulse, which then affects the spectral
properties of the fully amplified pulse. Adjustments to the seed pulse that comes from the first
OPA stage include its energy, but also the bandwidth and, most interestingly, the center wavelength
of the seed, which is shifted toward shorter wavelengths by about 10 nm to pre-compensate a red
shift due to temporal walk-off in the final OPA stage.

In our specific laser system, the spatial overlap of the pump and seed beams cannot be adjusted
in an automated way, but an iterative tuning procedure with alternating manual alignment of
the mirrors and automated tuning of delays, pump energies and phase matching angles can
nevertheless lead to an overall acceleration of the alignment of the laser system, where changes in
the spatial alignment can also influence the spectral properties, e.g. due to changes in the optical
path length of the pump and seed pulses.

3.3. Improving day-to-day reproducibility

While the previously described approach works well to maximize the performance at any given
time, changes in the lab conditions can affect performance. In our specific case, performance
drifts on a minute time scale were observed despite high temperature stability of the laboratory
environment of +0.1 K. To ensure the highest possible repeatability of performance from day
to day and to minimize the remaining performance drifts, it may be better to use a different
fitness function. An initial optimization can indeed be done with the fitness function described
above, but with slightly adjusted limits of the parameter space, in order to leave some room for
compensation of drifts in performance. This is especially necessary in the case of the pump
energies, since these are typically limited by the conversion efficiency of the SHG and only
decrease with changes in the system. Once an optimal working point is reached, the output
spectrum can be stored as a reference for future optimization runs.

By defining a fitness function that characterises the deviation of the output spectrum from the
un-normalized reference, one can reach the same spectral shape and amplitude on a daily basis.
The fitness function we minimized to achieve this can be written as

f =mean [(I(2) - Ler(2))*] . 2)

Figure 4 shows the performance of the laser system over a five day period with daily fine-tuning
of the operating point of the laser system. During the fine-tuning, which typically happended
in the morning, Eq. (2) was minimized starting from the current operating point and with the
initial spread of the population limited to 5% of the extent of the safety limits. This restricts the
optimization to a small search space and allows faster convergence, which is typically achieved
in around 2 minutes. To ensure that the optimizer has indeed converged, we let the it run for a
further minute beyond this typical time and stop the optimisation procedure only after 3 minutes.

From Fig. 4 we can also see that while the operation point is successfully recovered at each
optimization, there are some drifts in laser performance between the tuning times. To compensate
for these drifts, the laser system needs to be adapted more frequently, which would be possible
with a feedback loop that stabilizes the relevant laser parameters.
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Fig. 4. Reproducibility of daily optimization over a 4.5-day period. The vertical lines
show the periods of the daily optimization. The dots in the left column show the respective
optimisation outcomes. The right column shows a zoom into an example of one of the
3-minute-long optimisation periods, with the solid line showing a rolling mean of the
respective pulse properties.

4. Full state feedback control at an optimized working point

Stabilising a system with intricately coupled parameters faces a similar challenge as optimising
such a system: The output properties are strongly coupled, and multiple output properties can be
influenced by a single actuator. As a result, independent feedback loops based on conventional
single-input-single-output (SISO) feedback loops that aim to stabilize separate laser properties
can interfere with each other, potentially leading to resonances and unwanted fluctuations in
some of the laser parameters.

One approach to avoid such interference is to use a centralised controller that stabilizes
the overall state of the laser system, that is defined by the set of monitored output parameters.
Stabilization of multiple-input multiple-output (MIMO) systems is a common problem throughout
engineering, and a widely used solution is full-state feedback (FSF) control. This is based on a
linear state-space representation of the system for which an analytical solution exists, that brings
the system to a desired state.

4.1. Overview of state space control

State space control is based on a simple linear model of the system to be controlled. Since the
10 Hz operating frequency of our diagnostic system naturally introduces discrete time-steps, we
will use the discrete-time formulation to describe the temporal evolution of the laser system.
For our laser system, we can simplify the general description of discrete-time state-space-models
[17] to
Xer1 = Xx + Buy 3

where x; is the state vector of the system at time k, and x; = Xy sp — Xk absolute 1S the deviation of
the actually measured state x; apsolute from the setpoint xysp. B € R™™ ig the input matrix, which
describes the influence of a given input on the state of the system. i is the relative change of the
actuator positions. x; and uy have dimensions n and m respectively.



Research Article Vol. 31, No. 22/23 Oct 2023/ Optics Express 36922 |

Optics EXPRESS i NN

In our specific case, the absolute state-vector

Eopai

Eopaz
Xk,absolute = “)
Aopa2

Adopaz

is given by the output energy of both OPA stages, as well as the center wavelength and bandwidth
of the second OPA, while the input vector

TOPAI

TOPA2
ug = ()
Ep.opai

Ep.opa2

consists of the pump delays 7 and the pump energies Ep of the two OPA stages, respectively.
For such a system to be fully controllable by the inputs u, it must satisfy the controllability
condition which in our case can be written as [17]

rank(B) = n. (6)

This means that for the system to be movable to any arbitrary state x;; for which the state
space model is valid, the different axes of the system must be linearly independent. For a system
in which each input influences only a single output parameter, this is condition is always fulfilled,
since each input-output-relation is independent from one another. However, for systems in which
individual inputs affect multiple outputs — such as in OPCPA systems as we described earlier —
this is not as trivial, and controllability must be explicitly verified.

If the system is controllable, it can also be stabilized. This can be achieved by making the
inputs to the system dependent on the current state, thus creating a feedback loop

Xis1 = (I" + BK)xy, (7

where K is the feedback matrix. To stabilize the system, i.e., to ensure that x;,; ~ O is fulfilled
over long durations, we have to solve this equation and calculate the required feedback gains K.

4.2. Linear performance model of Malcolm

A first step in solving Eq. (7) is to determine B, which describes how the actuators act on the
laser performance. During the daily optimization (see section 3.2) we typically explore around
1000 different actuator positions around the optimized working point. We have recorded these
actuator positions together with the corresponding state of the system, i.e., the values measured
by the online diagnostics of the laser, resulting in a dataset that relates input parameters to laser
performance. For small deviations from the optimum, i.e., for data points close to the optimum
working point, the relationship can be approximated to be linear and the input matrix B can be
calculated by multivariate linear regression.

We performed the linear regression on the FWHM bandwidth, pulse energy, and center
wavelength of the two OPA stages, using the 650 data points with the best fitness value according
to Eq. (2). This restricts the data set to points closest to the optimum working point, which
ensures a linear relationship between the parameters by omitting points heavily influenced by the
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nonlinear behavior of the laser system. We further modify the measured values by subtracting
their mean and normalize them by their standard deviation to scale the parameters to a similar
magnitude and allow meaningful statistical analysis.

Since the most relevant parameters to stabilize are the output parameters of OPA2, namely
its output energy, center wavelength, and spectral bandwidth, we left the spectral properties of
OPA1 unstabilized to not over-constrain the system. As a result, we have four stabilized output
parameters: The center wavelength, the spectral bandwidth of OPA2, and pulse energy of OPA2
and OPA1. We found that these parameters are mainly influenced by the respective pump energy
and pump pulse delay in the two OPA stages. Therefore, we limited our linear regression to these
sets of four input and output parameters.

The laser performance is well described by the linear model, as illustrated in Fig. 5. The blue
line shows the measured laser parameters and, for comparison, the laser performance as predicted
from the stage positions for the same shots (orange). As expected, the bulk of the performance
variations is determined by the four input parameters. In particular, the output energy of OPA
stages 1 and 2, and center wavelength of the second OPA stage, are well represented by the model
with coefficients of determination of R = 0.8, R? = 0.73, and R? = 0.63, respectively. In the
case of the 10%-bandwidth, the coefficient is R* = 0.48, which is reasonable considering the
complex couplings in the OPCPA that affect the bandwidth.
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Fig. 5. Blue solid: measured performance parameters — pulse energy, center of mass
wavelength Acog, and 10%-bandwidth A2 of the laser. Orange solid: laser performance as
predicted by the linearized model using the stage positions at the respective laser shot. The
right column panels show a zoom to the shaded area in the plots on the left.
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To quantify the relevance of individual input parameters on the laser performance, we calculate
the p-value, i.e., the significance level of the observed correlations,

Topal  Topaz  Eporar  Epopaz

Eopal 0.00 (0.84  0.08 0.09
Eopa2 0.00 0.00 [0.15 0.03 8)
p =
CWLopa2 0.00 0.00 (0.67 [0.33

BWopa2 0.00 0.00 0.00 0.00

Lower p-values indicate that the observed correlation is more likely to be caused by actual
changes in the inputs rather than by random causes or other non-linear behaviour of the laser that
is not described by the linear model. For our application, we have defined a cut-off of p = 0.1,
above which we consider a correlation as spurious. The corresponding elements in Egs. (8) and
(9) are highlighted in red.

As an example, we can see from the low p-values in the bottom row of matrix (8), that the
bandwidth of OPA2 is determined by all of the four input parameters (pump delays Topa; and
TopA2, as well as pump energies Ep opa1, Ep,ora2) — again highlighting the complex couplings
in OPCPA that influence this particular parameter —, while the center wavelength of OPA2 is
determined only by the pump delays of the two OPA stages.

To ensure the controllability of the system and to eliminate spurious correlations from
influencing the feedback loop, we simplify matrix B by eliminating parameters with p>0.1:

TOPAI Topa2  Epopar  Epopaz
B [ -0.88 (20015 0.04 0.03
o | 075 -0.49 (@%F° 0.08 )
Cowlome | 037 0.66 (0% 005"
BWome | —032 0.62 0.0 0.11

Despite this simplification, the overall coefficient of determination of our model remains at
0.66, indicating that the high predictability of the model is maintained. The resulting matrix now
has a rank of 4 and thus satisfies the controllability condition (Eq. (6)). Note that the values in
the input matrix B (Eq. (9)) are in normalized units.

4.3. Calculating stabilization gains

While Eq. (7) can be solved unambiguously now that we know the system response to a given
input, the direct solution of the equation generally does not provide a feedback matrix K that
has any tolerance to model inaccuracy or measurement noise — both of which are present in
real-world implementations.

An alternative method for the calculation of K that results in a more cautious response to
changes of the system is pole placement [17]. In this method, the eigenvalues s of the closed-loop
system (1 — BK) are chosen to be |s|<1, such that Eq. (7) converges towards zero over several
time-steps. Adjusting the eigenvalues in the range —1<s<1 further allows to tune the response of
the feedback loop. An eigenvalue of s = 0 would correspond to an aggressive response of the
system that aims to eliminate the entire deviation from the setpoint within a single time-step. For
values of s # 0, the response is more cautious, with convergence to a stabilized state occurring
over multiple time steps. This provides an opportunity to tune the response of the system and to
include some tolerance to an imperfect representation of the laser dynamics by the model.
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In our specific case, we empirically found s = 0.8 to be a reasonable compromise between a
fast response to external perturbations of the system and tolerance to noise in the measured laser
properties, as well as towards drifts of the model over time.

4.4. Results of full-state-feedback-stabilization

Based on this approach, we implemented a full-state-feedback loop, to demonstrate the successful
simultaneous stabilization of the energy, bandwidth, and center wavelength of the laser system
over 4 hours, as shown in Fig. 6. Due to the limited response time of the actuators, the stabilization
was implemented as a simple drift compensation with the feedback loop operating at a rate of
0.5 Hz. In combination with the chosen eigenvalue of the feedback matrix of s = 0.8, this means
that after a step-like disturbance to the system, the desired setpoint to within 10% of the initial
deviation is recovered after 20 seconds.

Free running Stabilized
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Fig. 6. Free-running (left) and stabilized (right) laser performance using full-state feedback
control. The grey lines show a linear fit of the data to guide the eye and illustrate the
effectivness of the stabilization.

In particular the stabilization of the bandwidth demonstrates the ability of model-based control
to influence certain output parameters without the presence of an individual actuator that directly
influence the property. Instead, a combination of all actuators is used, with major components
being the saturation level of both amplifier stages and the timing of the pump pulses in the two
OPA stages. This is also reflected by the matrices Eq. (8) and Eq. (9).

5. Long term stability

To verify the long term stability of MaLcoLM, the laser was operated over period of 50 hours
with the stabilization running. The resulting trends in output energy, center wavelength, and
bandwidth are shown in Fig. 7. For the measurements, we were running the stabilization using
the lasers built-in diagnostics, and measured the laser output performance with an independent
set of diagnostics. For the energy measurement, all shots were recorded at the full repetition rate
of 1 kHz, while the spectra were recorded at a rate of 1 Hz (triggered) integrating over one single
shot.

The pulse energy stability was 0.18 % rms over the entire 50 hour measurement, while the
wavelength stability was 25 pm rms. The bandwidth at 10 % intensity level was 0.19 % rms. The
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Fig. 7. Long term stability of the MarLcoLm OPCPA seed laser, characterized with an
out-of-loop diagnostics. To guide the eye, the grey lines show the respective mean values.

short-term energy jitter — calculated over 1 second, i.e., 1000 shots — remained below 0.19 %
throughout the entire measurement, with an average of 0.17 %.

The slight drifts in the laser spectrum are actually caused by a subtle pointing drift within the
laser, which affected the coupling into the spectrometer. We therefore expect the actual stability
of the spectrum to be better than what is indicated in the plot.

The measured energy stability is largely limited by the resolution of our photodiode-based
energy heads, and in fact the rms variation of the integrated counts of the single-shot spectra
is only 0.13% over the entire 50-hour measurement. The integration over many spectrometer
pixels results in higher resolution in counts and lower relative intrinsic noise than with the energy
heads. Nevertheless, the value obtained from the spectrometer counts should be taken as an
indication only, since the spectra are only recorded at 1 Hz. However, short-term measurements
of the spectrum at the full 1 kHz repetition rate, show no difference in stability compared to
measurements at 1 Hz, except for additional small drifts in the long-term measurement due to the
aforementioned slow changes in coupling into the spectrometer.

6. Conclusion and outlook

In summary, we have demonstrated an automated tuning procedure of a two-stage OPCPA system
that allows the laser system to operate at an optimum working point. The working point can be
freely chosen. This not only speeds up the tuning procedure, but is also largely independent of
the laser operator’s experience with the system, and routinely allows higher output performance
to be achieved than is possible with manual tuning. The tuning procedure can also be used to
ensure a high degree of reproducibility of the laser’s performance on a day-to-day basis. We
have also shown that data collected during the optimization process can be used to calibrate a
linear performance model of the laser system, which can be used to stabilize the laser output
at the optimized working point using a full-state-feedback controller. Using this approach, we
could demonstrate continuous operation of our laser system over 50 hours with excellent stability
of pulse energy and spectral characteristics.

Our experiments show that even relatively simple methods that have been known for decades
are effective for precise and reliable control of laser systems. This allows the full potential of a
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laser system’s performance to be exploited, despite highly complex couplings between various
input and output parameters. As a result, highly complex laser systems such as optical parametric
amplifiers can be used as reliable tools for science. We believe that this potential is not limited
to OPCPA, but will also play a crucial role in other large laser systems that often face similar
challenges in reproducibility.
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